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Abstract

Background: Peripheral nerve injury can have long-term consequences including pain-related manifestations, such
as hypersensitivity to cutaneous stimuli, as well as affective and cognitive disturbances, suggesting the involvement
of supraspinal mechanisms. Changes in brain structure and cortical function associated with many chronic pain
conditions have been reported in the prefrontal cortex (PFC). The PFC is implicated in pain-related co-morbidities
such as depression, anxiety and impaired emotional decision-making ability. We recently reported that this region is
subject to significant epigenetic reprogramming following peripheral nerve injury, and normalization of pain-related
structural, functional and epigenetic abnormalities in the PFC are all associated with effective pain reduction.
In this study, we used the Spared Nerve Injury (SNI) model of neuropathic pain to test the hypothesis that
peripheral nerve injury triggers persistent long-lasting changes in gene expression in the PFC, which alter functional
gene networks, thus providing a possible explanation for chronic pain associated behaviors.

Results: SNI or sham surgery where performed in male CD1 mice at three months of age. Six months after injury,
we performed transcriptome-wide sequencing (RNAseq), which revealed 1147 differentially regulated transcripts in
the PFC in nerve-injured vs. control mice. Changes in gene expression occurred across a number of functional gene
clusters encoding cardinal biological processes as revealed by Ingenuity Pathway Analysis. Significantly altered
biological processes included neurological disease, skeletal muscular disorders, behavior, and psychological
disorders. Several of the changes detected by RNAseq were validated by RT-QPCR and included transcripts with
known roles in chronic pain and/or neuronal plasticity including the NMDA receptor (glutamate receptor,
ionotropic, NMDA; grin1), neurite outgrowth (roundabout 3; robo3), gliosis (glial fibrillary acidic protein; gfap),
vesicular release (synaptotagmin 2; syt2), and neuronal excitability (voltage-gated sodium channel, type I; scn1a).

Conclusions: This study used an unbiased approach to document long-term alterations in gene expression in the
brain following peripheral nerve injury. We propose that these changes are maintained as a memory of an insult
that is temporally and spatially distant from the initial injury.
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Background
Peripheral nerve injury can result in a multitude of changes
within an organism, including motor dysfunction, pain
and associated cognitive and emotional comorbidities.
While acute pain related to an injury is protective and
normally resolves, chronic pain can be detrimental to
the overall wellbeing and functioning of the individual.
Indeed, occasionally the “memory” of injury, in the form
of chronic pain, persists long after the initial recovery
phase and becomes difficult to reverse. This is due, in
part, to changes in anatomy and function that take place
in the peripheral as well as the central nervous system.
These changes can occur at many levels: individual mol-
ecules, synapses, cellular function, and network activity
[1]. It is therefore not surprising that injury is often
accompanied by local or systemic alterations in gene ex-
pression. To date, several reports have identified strong
links between injury and transcriptional changes in the
peripheral nervous system [2], blood [3] and in the brain
[4]. However, the full profile of transcriptional changes
that accompany chronic pain in response to peripheral
injury is unknown.
The fact that peripheral injury results in chronic behav-

ioral changes suggests that transient exposure to injury is
chronically embedded in the transcription programming
within the central nervous system, resulting in altered
phenotypic behaviors. In the current study, we tested this
hypothesis by focusing on the transcriptional changes
that occur in the prefrontal cortex (PFC) of chronically
neuropathic mice six months after the induction of
neuropathy. This area was chosen based on evidence
indicating its involvement in pain modulation [5,6] and
epigenetic differences that accompany peripheral nerve
injury [7]. In humans with back pain, reversible patho-
logical changes in both cortical thickness and functional
activation have been shown in the PFC [8]. In animal
models of neuropathic pain, the PFC undergoes synaptic
re-organization as early as 8 days following nerve injury
[9], and shows reductions in grey matter 5 months post-
injury [10]. Since the PFC has also been implicated in
depression and anxiety [11], common co-morbidities of
chronic pain, transcriptional changes in brain regions such
as the PFC can also provide an explanation for these
co-morbidities.
While brain-specific transcription associated with neuro-

pathic pain and injury has been previously investigated,
few studies have looked at the effects at time points
longer than ~ 1 month post-injury, whereas individual
patients often suffer for many years following the initial
injury. This distinction is critical as the development of
co-morbid conditions, such as anxiety-like behavior in
the rat, takes multiple months to develop [10]. Thus,
early time points might not fully incorporate the impact of
long term chronic pain on CNS plasticity. Furthermore,
previous studies have been limited by microarray-based
technologies that are inherently biased by probe density/
design and limited to coding mRNA transcripts [12]. We
therefore investigated the long-term (6 months post-injury)
transcriptional changes induced by peripheral injury in the
prefrontal cortex using whole transcriptome sequencing
(RNAseq) in a mouse model of chronic pain (Spared Nerve
Injury, SNI). Furthermore, we employed bioinformatic tools
to identify functional gene clusters that were altered in
the prefrontal cortex.
The aim of this work is to provide a comprehensive

and unbiased look at the molecular correlates of peripheral
nerve injury and catalog long-term transcriptional changes
that may play a role in the pathologies associated with
injury and pain. We believe that our findings will help
shed light on the “signature” of painful neuropathy in
the brain at both the molecular and network levels.

Results
Peripheral injury is accompanied by behavioral signs of
neuropathic pain six months post-injury
The persistence of nerve injury-induced hypersensitivity
to mechanical and cold stimuli and injury-related motor
impairment were confirmed six months following SNI
(data not shown; mechanical thresholds (grams) = 0.20±0.05
in SNI vs 0.82±0.07 in controls, p<0.0001; acetone-evoked
behaviors (seconds) = 2.9±0.4 vs. 0.4±0.05 in controls,
p>0.0001; motor impairment (latency to fall from accel-
erating rotarod) = 76±11 in SNI vs. 225±21 in controls,
p>0.0001; n=10/group).

Peripheral injury is accompanied transcriptomic changes
in the prefrontal cortex six months post-injury
Six months following SNI, significant changes in the
expression levels of 1147 different transcripts were identi-
fied in the prefrontal cortex (Figure 1, Additional file 1:
Table S1). Considering the genomic base pair represen-
tation of exonic (3.2%), intronic (35.5%) and intergenic
(61.3%) elements in mouse (Figure 1A), the PFC SNI-
associated transcriptome was equally partitioned between
coding RNA accounting for 40% (exonic) and 60% non-
coding (intergenic+intronic) base pairs of the transcriptome
(Figure 1B). Within differentially expressed transcripts
in SNI vs. sham control animals, the largest transcrip-
tional changes were observed in protein-coding exons
(63.4%) with the rest made up of non-coding RNA. Within
non-coding RNAs, the largest observed changes were in
non-translated transcripts (retained introns and processed
transcripts) followed by classes of microRNAs, transcribed
processed pseudogenes, lincRNAs and nonsense mediated
decay (Figure 1C).
The transcripts with the largest log2fold changes in RNA

expression in response to SNI (summarized in Table 1) in-
cluded several transcripts with previously uncharacterized
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Figure 1 Direction and nature of transcriptome expression
alterations in the prefrontal cortex six months after injury in
SNI and Sham animals. (A) Distribution of exonic, intergenic and
intronic elements within the mouse genome. (B) Distribution of
transcribed exonic, intergenic and intronic elements in SNI PFC
transcriptome relative to Sham PFC. (C) Distribution of differentially
expressed RNAs in the PFC associated with peripheral nerve injury.
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roles in the brain. Within this subset, specific transcripts
with a role in subcellular structure (actbl, col11a2, krt12,
krt20) and development pathways (lrat [13], aldh3a1 [14],
crb1 [15]) show some of the greatest transcriptional changes.
These transcripts showed large transcriptional differences
from control ranging between 4.20 and 5.20 log2fold change
for repressed genes and between 2.61 and 5.60 log2fold for
induced genes.
We further classified differentially expressed transcripts

in SNI animals that have brain-specific functions (Summa-
rized in Table 2). Examples include down-regulation of
neurotransmitter channel and receptor subunits gabrg1/3,
clca1, slc14a1 and drd2 and the astrocyte marker gfap
while sodium channel subunit scn1a, NMDA subunit
grin1, and promoters of neuronal growth xlr4b, robo3,
prc, and cux1 were all up-regulated in PFC from injured
mice. Specific transcripts identified with asterisks in
Tables 1 and 2 were further validated with RT-qPCR
(labeled with asterisks) and summarized in Figures 2A-D,
3B-C, 4B-C and 5B. Within these validated genes, robo3,
scn1a, grin1, xlr4b, krt20, syt2, and lbp showed marked
induction following SNI while gfap and clca1 showed
marked repression (unpaired 2-tailed t-test, p<0.05,
n=8). Whereas the genes in Figure 2 were selected for
validation due to an interesting role in the CNS,
Figures 4, 5, and 6 highlight validated genes within the
context of an identified functional gene cluster.

Peripheral nerve injury results in changed brain-specific
transcriptional programs
Ingenuity Pathway Analysis (IPA) identified specific net-
works that were dysregulated six months post-SNI in
the prefrontal cortex. Biological functions with a cutoff
p-value < 0.05 were considered statistically significant.
We identified the following biological functions specific to
peripheral nerve injury: neurological disease (p-value=
2.02E-21-1.46E-02), behavior (p-value= 2.68E-12-1.31E-02),
psychological disorder (p-value=7.80E-11- 1.46E-02), pro-
tein synthesis (p-value=1.70E-10 to 4.23E-03), and nervous
system development and function (p-value=5.93E-10 to
1.42E-02) (Figure 6, Additional file 2: Table S2). In our
screen, genetic disorders and skeletal muscular disorders
emerged but due to an unclear role in CNS we did not
perform further validation within these pathways.
With each biological function comprised of hundreds

of functional gene clusters we then focused on transcrip-
tional clusters previously associated with neurological
function. Within this scope, peripheral injury resulted in
up-regulation of pathways involved in cellular growth
and proliferation (Figure 3A), molecular transport and
neurological disease (Figure 4A) and neuronal develop-
ment (Figure 5A). We validated the induction of repre-
sentative genes included in these clusters by QRT-PCR:
robo3 and krt20 in the cellular growth and proliferation
pathway (Figure 3B-C), scn1a and syt2 in the molecular
transport and neurological disease pathway (Figure 4B-C)
and grin1 in the neuronal development pathway (Figure 5B).

Discussion
Our results delineate for the first time a transcriptomic
signature in the prefrontal cortex resulting from peripheral
injury six months prior. Interestingly, both coding and
non-coding transcripts are altered.
The coding transcripts include both genes that were

previously implicated in the pathology associated with
neuronal plasticity as well as genes with yet an unknown
role in brain function, neuronal plasticity or in chronic
pain. We further mapped the functional gene pathways
whose transcription was altered, identified specific clus-
ters involved in neuronal plasticity and validated candi-
date genes within these pathways. Genes known to play
a role in brain structure and function that were differen-
tially expressed and validated in response to peripheral
injury were: clca1, syt2, grin1, scn1a, krt20, xlr4b, gfap,



Table 1 Top upregulated and downregulated transcripts in SNI

Gene Chr Start End p-Value Log2fold change

Brain-specific angiogenesis inhibitor 1-associated protein 2-like protein 1 5 145036642 145036834 1.23E-08 −5.20

A330050B17Rik 3 35921194 35924028 5.37E-07 −4.92

Actin, beta-like 2 13 112045221 112047957 8.12E-10 −4.56

mmu-mir-220 6 136348946 136349031 5.54E-20 −4.53

Crumbs homolog 1 1 141142194 141145652 4.49E-5 −4.43

Collagen, type XI, alpha 2 17 34189110 34189163 2.34E-4 −4.23

Thyrotropin-releasing hormone receptor 15 44065008 44065236 2.34E-4 −4.22

Gm14204 2 158421208 158422248 1.10E-12 −4.08

Gap junction alpha-5 3 96879570 96881339 2.37E-11 5.60

Keratin 20* 11 99299001 99299464 7.97E-6 4.65

Mediator complex subunit 23 10 24589792 24589952 4.30E-4 4.08

Keratin 12 11 99280858 99281014 3.83E-10 4.08

40S ribosomal protein S28 17 33959981 33960061 1.47E-13 3.76

A830036E02Rik 11 99283179 99283574 1.77E-17 3.69

Lecithin-retinol acyltransferase 3 82696501 82701050 4.22E-08 3.10

Thiosulfate sulfurtransferase (rhodanese)-like domain containing 2 4 46151364 46151566 5.24E-4 2.77

Complement component 1 r subcomponent A 6 124463670 124463895 5.24E-4 2.73

Aldehyde dehydrogenase 3 family member A1 11 61028052 61028260 3.22E-6 2.61

Changes are labeled as log2fold change.

Table 2 Biased upregulated and downregulated transcripts in SNI with known brain-specific functions

Gene Chr Start End p-Value Log2fold change

Calcium-activated chloride channel regulator 1* 3 144409728 144409992 4.95E-04 −3.19

Solute carrier family 14 (urea transporter), member 1 18 78308093 78308285 2.90E-06 −2.37

Gamma-aminobutyric acid receptor subunit gamma-1 5 71185885 71185952 8.90E-05 −2.17

Activating transcription factor 3 1 192994175 192995558 8.97E-07 −1.98

Fatty acid binding protein 7 10 57505312 57505484 4.36E-12 −1.44

Gamma-aminobutyric acid receptor subunit gamma-3 7 64433752 64435107 3.29E-04 −1.38

Glial fibrillary acidic protein * 11 102753225 102753268 2.40E-04 −1.24

Fos 12 86816542 86816649 4.62E-04 −0.90

Dopamine receptor D2 9 49215006 49216282 1.44E-05 −0.88

X-linked lymphocyte-regulated 4B * X 70463702 70467280 1.72E-03 3.87

Lipopolysaccharide-binding protein* 2 158139209 158139364 3.31E-04 2.54

Protein regulator of cytokinesis 1 7 87460000 87461144 5.70E-05 2.40

Cut-like homeobox 1 5 137041250 137041567 1.46E-04 2.24

Roundabout, axon guidance receptor, homolog 3* 9 37227254 37227393 1.51E-05 1.96

Sodium channel, voltage-gated, type I, alpha subunit* 2 66166462 66166603 4.34E-04 1.10

Synaptotagmin-2* 1 136644052 136649726 9.10E-09 0.91

Synapsin 1 X 20497539 20498130 1.72E-03 0.59

Glutamate [NMDA] receptor subunit zeta-1* 2 25174149 25174615 3.31E-04 0.57

Changes are labeled as a log2fold change.
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Figure 2 Validation of transcript mRNA expression. Quantitative PCR validation of downregulated transcripts CLCA1 (A) and GFAP (B) and
upregulated transcripts XLR4B (C) and KRT20 (D) relative to GAPDH. *=p<0.05. n=8/group. Error bars = S.E.M.
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lbp and robo3. Considering the importance of the PFC
to chronic pain and its associated co-morbidities, these
broad, functionally-relevant changes in the transcriptome
of the PFC provides a possible substrate for the long-term
systemic effects of peripheral injury and may elucidate
transcriptional mechanisms of supraspinal pathologies
associated with chronic pain.
Figure 3 Functional pathway analysis. Nerve injury affects
transcriptional programs unique to neurological disease, skeletal and
muscular disorders, psychological disorders and changes in behavior
scored and ranked according to Ingenuity Pathway Analysis using
Fisher’s exact test. The dotted line indicates the threshold value
of p<0.05.
Coding/noncoding transcriptomic changes
While annotated coding transcripts account for about a
third (n=209000) of the long-term differential transcrip-
tome in response to SNI, the remaining differentially-
expressed transcripts were non-coding unannotated RNA
(intergenic+intronic) (n=435000) (Figure 1B). Within
differential exonic transcripts, we further classified all an-
notated genes into their respective RNA classes (Figure 1C).
Approximately 60% of exonic elements represent protein-
coding genes and the remaining 40% demonstrate a wide
array of noncoding RNA with a previously uncharacterized
role in peripheral nerve injury (Additional file 1: Table S1).
The role of noncoding RNA has been discussed extensively
[16,17] and it is known to be involved in a variety of func-
tions ranging from translation [18], splicing [19] to tran-
scriptional regulation [20]. The fact that SNI induces
non-coding (both annotated and un-annotated) tran-
scripts in the brain that could be detected long after the
initial injury suggests that they might be playing a func-
tional role in the brain response to peripheral injury.
However, the mechanisms involved remain unknown at
this stage. Nevertheless, our data provide further sup-
port to the emerging idea that genome-function in the
brain involves more than the commonly studied protein
coding gene sequences.
Annotated SNI-associated transcriptional differences were

categorized into biological functions using ingenuity path-
way analysis and we identified statistically significant
affected gene pathways pertinent to neurological disease,
behavior and psychological disorders (Figure 6 Additional
file 2: Table S2). The SNI-associated transcriptome of
the PFC appears particularly relevant to several of the



Figure 4 Cellular growth and differentiation. Nerve injury results in distinct changes in transcription in pathways involved in cellular growth
and proliferation. (A) RNAseq and IPA identified interacting networks affecting cell cycle, cell proliferation and cellular development. Up-regulated
transcripts are marked with red while downregulated transcripts are marked in blue. SYT2 (B) SCN1A (C) transcripts were validated by qPCR.
*=p<0.05. n=8/group. Error bars = S.E.M.
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co-morbidities associated with peripheral nerve injury
such as poor sleep, anxiety and depression [21] as the
PFC is highly implicated in these conditions [22-24].
Considering the identified molecular pathways (Figure 6),
chronic neuropathic pain may alter higher order biological
functions that may mediate these behavioral disorders.
Genes involved in chronic injury and altered neuronal
growth and proliferation in the PFC
The up-regulation of robo3, krt20, xlr4b in response to
peripheral injury and overall pathway analysis suggests
altered regulation of gene networks involved in neuronal
cellular growth (Figures 2 & 3, Additional file 2: Table S2).
Previous work using the same model of peripheral nerve
injury reported altered neuronal growth in injured animals
characterized by longer basal dendrites with more branches
in cortical layer 2/3 pyramidal neurons in injured vs.
control animals [9]. The cell adhesion membrane pro-
tein ROBO3, which is up-regulated in the injured mice,
has been shown to be essential for axonal guidance in
drosophila [25] and is a regulator of cortical interneuron
growth in mice [26] and serotonergic neuronal differen-
tiation [27]. While not previously considered in the con-
text of peripheral injury, its role in regulating morphology
and function of neurons is consistent with a possible
contribution to cortical remodeling in response to in-
jury (Figure 3B).
xlr4b, a non-coding RNA, has been shown to regulate

chromatin remodeling as well as modulate cognitive
defects in a mouse model of Turner’s Syndrome [28].
Upstream regulators of xlr4b, cux1 and cux2 control
the number and maturity of dendritic spines in cortical
neurons in cortical layer 2/3 pyramidal neurons [29].
Interestingly, in addition to xlr4b, cux1 is up-regulated
(4 fold) in the SNI animals, supporting the hypothesis
that this gene regulatory pathway is activated (Additional
file 1: Table S1 and Figure 3A). clca1, which is down-
regulated in the PFC in response to peripheral nerve
injury (Figure 2A), encodes a calcium chloride channel.
Calcium chloride channels are highly conserved structur-
ally but have diverse expression patterns and physiological
functions [30,31]. CLCA1 has been implicated in neur-
onal death [32], suggesting that CLCA1 might play role
in neuronal reorganization in the PFC.
Lastly, while krt20 is not directly implicated in neuronal

growth, as a soft keratin and intermediary filament, its
expression is ubiquitous. krt20 is up-regulated in the
PFC (Figure 3C) in response to peripheral nerve injury
and it is considered a member of functional pathways
involved in cell cycle and proliferation (IPA analysis).
Taken together, these data are consistent with alterations



Figure 5 Cell cycle and growth. SNI causes distinct changes in transcription in pathways involved in cell cycle and growth. (A) RNA sequencing
and IPA identified interacting networks affecting cell cycle, cellular growth and proliferation and cellular development. Upregulated transcripts are
marked with red while downregulated transcripts are marked in blue. ROBO3 (B) and KRT20 (C) transcripts were validated by qPCR. *=p<0.05.
n=8/group. Error bars = S.E.M.
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in regulation of cell growth and proliferation as a chronic
response to peripheral nerve injury. However, direct ex-
periments need to test whether these transcriptional
changes in the PFC are causally involved in altering
neuronal or associated cell growth in the PFC.
Molecular transport and neurological disease
Chronic pain changes the brain at various levels: changes
in cortical grey matter [33,34], white matter [35], and
overall cortical excitability [36] have all been reported.
Recent studies have shown that chronic pain is linked to
changes in synaptic structure and function in the pri-
mary somatosensory cortex [37], hippocampus [38], and
anterior cingulate cortex [39]. It is therefore not surpris-
ing that several neurological disorders are co-morbid
with chronic pain. Previous reports have shown chronic
pain is associated with impaired decision-making [40],
anxiety, depression and sleep disorders [41]. In the SNI
model, the PFC exhibits signs of damage following per-
ipheral injury [9,10]. Considering that the PFC is shown
to regulate higher order emotional processing, transcrip-
tional changes in the PFC can identify putative candidates
mediating known co-morbid pathologies seen with chronic
injury and/or pain.
Mutations in sodium channels have been previously

implicated in pain and in the modulation of neuropathic
and inflammatory pain [42,43]. In the present study,
IPA-identified pathways reveal that the gene encoding
sodium channel scn1a, which is a member of the neuro-
logical disease functional gene cluster, is up-regulated in
the SNI group (Figure 4C). Familial missense mutations
in scn1a have been linked to epilepsy [44], migraines
[45] and brain structure in aging individuals [46]. Inter-
estingly, these familial missense mutations can result in
increased sodium channel activity; for example, the D188V
mutation (linked to epilepsy) results in impaired inactiva-
tion, and the Q1489K mutation (linked to familial hemi-
plegic migraine) results in changes in channel gating
which include accelerated recovery from inactivation
and increased persistent current [47]. Thus, the functional
result of these missense mutations may be analogous to
the impact of nerve injury-induced up-regulation of the
same channel.
This is the first demonstration of long-term over-

expression of scn1a in the prefrontal cortex following



Figure 6 Neuronal development. SNI causes distinct changes in transcription in pathways involved neuronal development. (A) RNA sequencing
and IPA identified interacting networks affecting cellular assembly and organization and nervous system development and function. Upregulated
transcripts are marked with red while downregulated transcripts are marked in blue. (B) GRIN1 transcript was validated by qPCR. *=p<0.05. n=8/group.
Error bars = S.E.M.

Alvarado et al. Molecular Pain 2013, 9:21 Page 8 of 12
http://www.molecularpain.com/content/9/1/21
peripheral injury. Nevertheless our data is consistent with
previous reports showing up-regulation of SCN3A, for ex-
ample, in dorsal root ganglia following axotomy [48]. The
data is consistent with the hypothesis that scn1a over-
expression (and to a lesser degree scn1b, scn2b, and scn4b
(Additional file 1: Table S1)) is involved in increased cor-
tical excitability [49] associated with chronic pain.
Synaptotagmin II (syt2) is up-regulated in our model

in response to peripheral injury (Figure 3B) which is con-
sistent with its role in neurological function and disease.
Synatoptoagmins are Ca2+ sensors involved in vesicular
trafficking and exocytosis and mediate vesicular release
important for neurotransmission [50]. Syt2 was previously
reported to be involved in vesicular GABAergic trans-
mission [51], and may therefore also be involved in pain-
mediated alterations in GABA and glutamate receptor
activation known to accompany models of peripheral
injury [52].
LBP, a mediator of innate immunity [53], is up-regulated

in the PFC of animals with peripheral nerve injury. Inter-
estingly, LBP-KO mice show increased spine density and
abnormal spine morphology, indicating a role for LBP role
in synaptic pruning [54]. We speculate that its role in
TLR4 signaling may link it to the neuroinflammation and
depression induced by treatment with lipopolysaccharide
[55]. Altered LBP expression in the PFC in response to
SNI might be playing similar roles in the gene networks,
possibly mediating cortical neuroinflammation in animals
with peripheral nerve injury.

Nervous system development and function
One of the functional gene pathways that is highly enriched
by genes that are differentially expressed six months after
nerve injury is the pathway involved in nervous system
development and functions (Figure 5, Additional file 2:
Table S2). One member of this cluster which is up-
regulated by SNI is grin1 (NMDA receptor subunit 1).
NMDA receptors are linked to neuroplastic changes
including long-term potentiation [56] and implicated
in psychiatric disorders [57-59] and anxiety [60,61].
Within the nervous system development and function

cluster we found a marked decrease in the expression of
gfap, a marker for astrocytes. Astrocytes are implicated
in synapse maintenance, secretion of neurotrophins, and
overall function in maintaining neuroplasticity. Previous
work has shown that peripheral nerve injury is associated
with increased levels of gfap in the spinal and medullary
dorsal horns [62,63], anterior cingulate cortex [64-66], and
the periaqueductal gray, during early and intermediate
time points after injury [65]. However, there is evidence
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showing gfap is down-regulated in the PFC in psycho-
logical disorders [67,68]. Furthermore, pain-related patho-
logical changes in neuroinflammation in the spinal cord,
such as microglial activation, may occur in the absence of
parallel dysregulation in supraspinal structures [69], and
glial activation following spinal cord injury is both spatially
and temporally regulated. Thus, the well documented in-
creases in astroctye activation in the spinal cord following
nerve injury [70] may not be mirrored in the PFC and/or
gfap could be up-regulated during the early and middle
stages of injury but down-regulated at very chronic stages
once the co-morbidities have appeared.
Conclusions
We demonstrate broad changes in gene expression in
the mouse prefrontal cortex six months after peripheral
nerve injury, illustrating a long-term impact of a periph-
eral injury on brain genome function. The use of RNAseq
allowed for an unbiased picture of the transcriptomic
changes involved in chronic neuropathy in the PFC. Fur-
thermore, the ingenuity pathway analysis revealed func-
tional gene networks that were significantly implicated
including networks involved in brain development and
function. These reported changes and their functional
analysis will generate hypotheses on the molecular mecha-
nisms that mediate chronic pain and its co-morbidities
that will need to be tested in future experiments.
These wide-spread changes in gene expression in the

PFC are consistent with our previous report demon-
strated significant genome-wide changes in global DNA
methyation that we predicted would result in the dys-
regulation of hundreds of genes. Thus, epigenetic mecha-
nisms that embed the transient peripheral injury into a
long-term programmatic change in gene function in the
brain may be contribution to these mechanisms [7].
Although we demonstrate a causal relationship between

peripheral injury and a transcriptome change six months
later, it is unknown whether these are the same changes
that occurred in the brain at the time of injury or whether
(and more probably) a cascade of gene expression alter-
ations led to the chronic profile observed in our study.
Furthermore, it is unknown if similar changes occur in
other spinal or supraspinal regions. Further experiments
are required at multiple time point and in additional brain
regions, including those not implicated in pain signaling,
before the significance of these findings can be fully
understood. Finally, there is currently no evidence that
these patterns are the cause of chronic pain or its asso-
ciated co-morbidities. Nevertheless, our study strongly
supports the plausibility that long-term changes in gene ex-
pression in the CNS are involved in chronic pain and its
associated behaviors, and generates hypotheses on the
genes and functional gene networks that might be involved.
Methods
Animals
8–10 week-old male CD1 mice (Charles River, St-Constant,
QC, Canada) were used. Animals were housed in ventilated
polycarbonate cages and received water and standard la-
boratory rodent diet (Harlan Teklad, soy-free diet 2020X)
ad libitum. All experiments were approved by the Animal
Care Committee at McGill University, and conformed to
the ethical guidelines of the Canadian Council on Animal
Care and the guidelines of the Committee for Research
and Ethical Issues of the International Association for the
Study of Pain published in PAIN, 16 (1983) 109–110. All
surgery was performed under isoflurane anesthesia, and
all efforts were made to minimize suffering.

Induction of nerve injury
Neuropathy was induced using the spared nerve injury
model. Under deep anesthesia, an incision was made on
the lateral surface of the thigh through the muscle, ex-
posing the three terminal branches of the sciatic nerve:
the sural, common peroneal and tibial nerves. The com-
mon peroneal and the tibial nerves were tightly ligated
with 6.0 silk (Ethicon) and sectioned distal to the ligation.
The sural nerve was left intact. Sham surgery involved
exposing the nerve without damaging it [71,72].

Behavioral assessment
Mechanical sensitivity
Calibrated monofilaments (Stoelting Co., Wood Dale, IL)
were applied to the plantar surface of the hindpaw and the
50% threshold to withdraw (grams) was calculated as pre-
viously described [73]. The stimulus intensity ranged from
0.008 g to 4 g.

Cold sensitivity
A modified version of the acetone drop test [74] was used:
total duration of acetone evoked behaviors (flinching, lick-
ing or biting) was measured for 1 minute after acetone
(~25 μl) was applied to the plantar surface of the hindpaw.

Motor function
The accelerating rotarod assay was used (IITC Life Science
Inc., Woodland Hills, CA) with the mouse adapter [75].
The task includes a speed ramp from 0 to 30 rpm over
60 s, followed by an additional 240 s at the maximal speed.

Tissue extraction
Animals were sacrificed 6 months after nerve injury
or sham surgery by decapitation following isoflurane
anesthesia. Anatomical regions were defined according
to the stereotaxic coordinates (rostral–caudal, medial–
lateral and dorsal–ventral from bregma) by Paxinos and
Franklin [76]. The prefrontal cortex (right and left; +1 to
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+3, -1 to +1, 0 to −2.5) was extracted, frozen on dry ice
and stored at −80 C until use.

RNA extraction and RNA sequencing
RNA was extracted with Trizol (Invitrogen) according to
the manufacturer’s protocol and treated with DNAse.
cDNA libraries and RNA sequencing was performed by
Genome Quebec on the Illumina Genome Analyzer IIX
following Illumina guidelines.

Expression validation
3 ug of RNA was used for cDNA conversion using random
hexamers (Roche Molecular Biochemicals) according to
manufacturer’s guidelines. Expression primers were designed
over overlapping exons with Autoprime.de [77] or specific
to single exons that were differentially expressed in RNAseq
and are shown in Additional file 3: Table S3. All reactions
for all subjects (n=6-8 per group) were performed on the
LightCycler 480 (Roche) in triplicate and statistical signifi-
cance was determined as P<0.05 using one-tailed t-tests.
Quantitative PCR was amplified with a pre-incubation
at 95°C for 10 minutes followed by 45 cycles of [95°C
for 10 seconds, 60°C for 10 seconds, 72°C for 10 sec]
followed by 10 minutes of 72°C. Expression was measured
relative to GAPDH expression, which demonstrated stable
unchanged expression from RNAseq results.

RNAseq analysis
Two animals were sequenced per condition with 36 bp
reads with single end sequencing. RNAseq reads were
aligned to the genome (mm9) using Top Hat [59,78]. Be-
tween 36 and 40 million reads aligned to unique genomic
locations. Differential expression was determined from
read counts per transcript, exon and 1000 bp genomic
partition using Bioconductor [79] package DESeq [80]
with default parameter settings. Transcript annotations
were obtained from Ensembl version 63.37 (http://www.
ensembl.org/). Concordance of read counts per 1000bp
genomic partition between pairs of samples ranged be-
tween 0.88 to 0.99.

Pathway analysis
Ingenuity Software was used to perform whole pathway
analysis in the identification of affected networks and
their relationship to each other based on the differential
expression between SNI and Sham treated mice. Briefly,
our data set containing gene identifiers and correspond-
ing expression values was uploaded into the application.
Each identifier was mapped to its corresponding object
in the IngenuityW Knowledge Base. Differentially expressed
genes, called Network Eligible molecules, were overlaid
onto a global molecular network developed from informa-
tion contained in the Ingenuity Knowledge Base. Networks
of Network Eligible Molecules were then algorithmically
generated based on their connectivity. Pathways presented
were chosen from following candidate gene validation (as
indicated with asterisks in Table 2). Right-tailed Fisher’s
exact test was used to calculate a p-value determining the
probability that each pathway, biological function and/or
disease assigned to that data set is due to chance alone.

Additional files

Additional file 1: Table S1. List of differentially regulated genes as
revealed by RNAseq.

Additional file 2: Table S2. Ingenuity Pathway Analysis of altered
biological functions in Sham vs. SNI PFC.

Additional file 3: Table S3. QPCR primer sets used for validation.
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